В работе величина НКПР определялась также экспериментально в стеклянном взрывном цилиндре по методике ГОСТ 12.1.044-84. При испытании вещества до концентрации 500 г/м³ взрыва не наблюдалось. Таким образом пылевоздушная смесь АДР-1205 является пожаровзрывобезопасной. Видимо это обусловлено высоким склонностью к адгезии и гигроскопичностью вещества, потенциалом к комкованию и присутствием инертных элементов N, O, галогена F и 2 групп НС1 (36,92 масс. %) в структуре вещества. Присутствие одновременно всех этих трех факторов делает пылевоздушнную смесь пожаровзрывобезопасной.

Обобщив результаты исследований, можно дать следующую оценку: исследованная пыль АДР-1205 является пожаровзрывобезопасной при естественных условиях хранения. Однако при изменении условий, например, в процессе сушки пыль может приобрести пожаровзрыво-опасные свойства. Вещество обладает достаточно высокой термической стойкостью ($t_{\text{нир}}$ составляет 250 °C). По закону Гесса определена величина теплоты сгорания вещества. Для получения полной оценки пожаровзрывоопасности требуется дальнейшее исследование вещества.

Список литературы

- 1.Беллами Л. Дж. Инфракрасные спектры сложных молекул. Пер. с англ. под ред. Ю. А. Пентина // М.: Изд-во Иностранной литературы, 1963, 592 с.
- 2. Аносова Е.Б. Автореферат диссертации на соискание ученой степени к. т. н.- Пожаровзрывоопасность новых фармацевтических препаратов и полупродуктов их синтеза //М., 2009,16 с.
- 3. Расчет основных показателей пожаровзрывоопасности веществ и материалов. Руководство // М., ВНИИПО, 2002, 77с.
- 4. Пальм В.А. Введение в теоретическую органическую химию. Учебное пособие для университетов //М: Высшая школа, 1974, 446 с.
- 5. Рид Р., Праусниц Дж., Шервуд Т. Свойства жидкостей и газов //Л.:Химия, 1982, стр. 216-236.
- 6. Монахов В.Т. Методы исследования пожарной опасности веществ // М.: Химия, $1972,416\ c.$

УДК 614.838.12

ВЛИЯНИЕ ФТОРА В СТРУКТУРЕ ВЕЩЕСТВА НА ВЗРЫВООПАСНОСТЬ ОРГАНИЧЕСКИХ ПЫЛЕЙ

А. Н. Шушпанов, А. Я. Васин, Л.К. Маринина Российский химико-технологический университет им. Д.И. Менделеева

В химической и смежных с ней отраслях промышленности широко используются вещества, содержащие в своей структурной формуле элемент F. Задачей исследования было предварительно установить влияние F в структуре веществ на их пожаровзрывоопасные свойства. Изначально предполагалось, что при увеличении процентного содержания F в структуре вещества данный элемент проявит свойства, аналогично таким галогенам, как Cl и Br — то есть, ингибирующие свойства по прекращению горения за счёт захвата радикала H^{\bullet} и обрыва цепной реакции, как показано, например, в работе [1]. В работе [2] было показано,

что при увеличении содержания Cl в составе вещества увеличивается и значение нижнего концентрационного предела распространения пламени (НКПР). Для Cl максимальное содержание в составе веществ, дающих воспламенение -28,5 масс. %, для Br-25 масс. %. Изначально предполагалось, что вещества с аналогичным или большим содержанием F проявят сходные свойства.

В работах [2, 3] было определено влияние галогенов (Cl, Br) на взрывоопасность аэровзвесей. Для установления влияния хлора отбирались вещества с эмпирической формулой $C_aH_bO_cN_dCl_n$. Следуя методике указанных работ, для исследования из [4] были взяты твёрдые органические вещества, дополнительно содержащие в структуре F. Таким образом были отобраны 17 твёрдых органических веществ, содержащих в эмпирической формуле от 1 до 16 атомов фтора (процентное содержание элемента F в структуре – от 9 масс. % до 70 масс. %), часть веществ — ароматические и полимерные соединения (для полимеров расчет процентных содержаний проводился по мономерному звену).

Более половины исследованных веществ содержат в составе элементы О и N (всего 12 таких соединений). Об этих соединениях следует дополнительно отметить, что здесь помимо предполагаемого ингибирующего влияния F должно было наблюдаться флегматизирующее влияние инертных элементов N и O. При определенном процентном составе таких инертных компонентов аэрозоль может оказаться в принципе невоспламеняемым [2]. Инерты требуют дополнительную энергию на разогрев и этим также могут повышать пожаровзрывобезопасность вещества.

Названия и пожаровзрывоопасные свойства отобранных веществ, содержащих в своей структуре F, приведены в таблице. Также в таблице приведены процентные содержания F в структуре вещества и отдельно суммарное содержание инертных элементов N, O и галогенов F и Cl.

Таблица 1. Фторсодержащие соединения, их пожаровзрывоопасные свойства, процентное содержание фтора

N	Название и структурная формула	t всп., ℃	t воспл., ℃	НКПР, г/м ³	масс. % F	масс. % N, O, F, Cl
1	2,2-Бис(фенил)-гекса-фторпропан-4,4'-дикарбоновая кислота, $C_{17}H_{10}O_4F_6$		466 (аэрогель) 500 (аэровзвесь)	103	29	45
2	2,2-Бис(n-толил) гексафторпропан $C_{17}H_{14}F_6$		465 (аэрогель) 490 (аэровзвесь)	92	34	34
3	Бис(трифторацетат)дибутилолово $C_{14}H_{18}O_6F_9Sn$		554 (аэровзвесь)	21	30	46
4	2 ,6-динитро-4-трифторметил-N,N'- дипропиланилин, $C_{13}H_{16}O_4N_3F_3$	155	169	18	17	49
5	Аммонийная соль w-гидроперфторпеларгоновой ки-слоты $C_9H_5O_2NF_{16}$	155	269 547 (сам.)	99	62	73
6	\square -моногидроперфторгептановая кислота $C_7H_2O_2NF_{12}$		505 (сам.)		62	75

7	Моноэтаноламид перфторгептано-		420 (сам.)		60	72
	вой кислоты, $C_9H_6O_2NF_{13}$					
8	Моноэтаноламид перфторпента-	152	447 (сам.)		55	72
	новой кислоты, $C_6H_4O_2NF_8$	(НТПР				
		142°C				
		ВТПР				
		179°C)				
9	1,1,9-тригидроперфторнонанол	НТПР	359 (сам.)		70	74
	$C_9H_4OF_{16}$	108℃				
		ВТПР				
		137℃				
10	Которан-N-3-		200	65	25	44
	(трифторметилфенил)-N,N'-		460 (сам.)			
	диметилмочевина, $C_{10}H_{11}ON_2F_3$					
11	Пентафторфенол С ₆ НОГ ₅		517 (сам.)		51	60
12	п-хлорбензолсульфонилфторид	171			9	44
	C ₆ H ₄ O ₂ SFCl					
13	□-перфторацетоксипропил-	НТПР	240 (сам.)		21	69
	метилдихлорсилан , $C_6H_9O_2F_3Cl_2Si$	81℃				
		ВТПР				
		200℃				
14	Поливинилиденфторид, $C_2H_2F_2$				59	59
15	Фторопласт Ф-1, $C_4H_4ClF_3$		487	55	40	64
16	Фторопласт Ф-30П , C_2H_3F		610	нет до	41	41
				373		
17	Фторопласт Ф-32Л, $C_4H_2ClF_5$		608	нет до	53	72
				227		

Из таблицы видно, что при увеличении процентного содержания F в структуре вещества, значение НКПР практически не увеличивается — даже при 62 масс. % F в структуре вещества НКПР может составлять 99 г/м³, как видно на примере $C_9H_5O_2NF_{16}$. Ранее исследованные функциональные заместители (Cl, Br, N, O) по-прежнему обуславливают меньшую химическую активность вещества за счёт требования большего количества энергии на разогрев, физические и физико-химические превращения, что повышает пожаровзрывобезопасность вещества [5].

По результатам можно сделать вывод о том, что в отличие от ранее исследованных функциональных заместителей, F практически не проявляет ингибирующего действия на процесс горения пылей.

Список литературы:

1. Баратов А.Н. Горение-пожар-взрыв-безопасность // М., ФГУ ВНИИПО МЧС России, 2003, 364 с.

- 2. Васин А.Я. Изучение влияния различных функциональных заместителей и групп на взрывоопасность органических пылей // Химическая промышленность сегодня, 2007, №1, с. 35-39
- 3. А.Я. Васин, Г.Г. Гаджиев, Л.К. Маринина. Влияние различных функциональных заместителей и групп на величину нижнего концентрационного предела распространения пламени органических пылей // Материалы международной н/п конференции молодых ученых по проблемам техносферной безопасности в рамках первой всероссийской Недели охраны труда, М.: РХТУ им. Д.И. Менделеева, 2015, с. 29-31
- 4. Корольченко А.Я., Корольченко Д.А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник: в 2-х ч. 2-е изд., перераб. и доп. М.: Асс. «Пожнаука», 2004 г. Ч.1. 713 с., Ч.2 774 с..
- 5. Васин А. Я., Соболева Л. И., Платонова С. А. Влияние хлора и инертных элементов в структуре вещества на взрывоопасность органических пылей // Современные пожаробезопасные материалы и технологии: сб. материалов II Межвузовской научнопрактической конференции Иваново: ФГБОУ ВО Ивановская пожарно-спасательная академия ГПС МЧС России, 2016, с. 27-31

УДК 66.061.35

СПЕКТРЫ ВОДНЫХ РАСТВОРОВ ПРОДУКТОВ РЕАКЦИИ N_2 и O_2 ПРИ ВОЗДЕЙСТВИИ УЛЬТРАЗВУКА НА ВОЗДУХ

Ю. Г. Дикарева, В. С. Рыжков, В. В. Серёгин Российский химико-технологический университет им. Д.И. Менделеева

В данной работе исследовали влияние ультразвукового воздействия (УЗВ) на воздух. За изменениями, происходящими в воздухе, следили по УФ спектрам водных растворов продуктов реакции в диапазоне длин волн 200-350 нм. УЗВ проводили в ультразвуковом устройстве «Місго Ultrasonic Cleaner» с источником УЗ мощностью 60 Вт и частотой 45 кГц. Время УЗВ составляло 8 минут 25 секунд и 1 минута 39 секунд. Спектры записывали на спектрофотометре ПЭ-6100 УФ, скорость сканирования длин волн 1000 нм/мин, спектральная ширина щели 2 нм, шаг развертки спектра 1 нм, диапазон измерения оптической плотности D от 0 до 1, кювета 1 см. Особое внимание уделяли чистоте кювет — выдерживали их в растворе перманганата калия и промывали раствором лимонной кислоты и дистиллированной водой.

Для записи спектров готовили исследуемые растворы следующим образом. Тонкостенную колбу с полипропиленовой пробкой объемом 27,93 мл (до пробки) помещали в ультразвуковое устройство заполненное водой и воздействовали ультразвуком на воздух в колбе. Воздух после воздействия растворяли в 5 мл дистиллированной воды, добавляя ее с помощью медицинского шприца. Содержимое колбы перемешивали, чтобы продукты газовой фазы перемешались с водой. После этого записывали спектр полученного раствора (Рис.1).

В других опытах, в тонкостенную колбу дозировали воду. В медицинский шприц набирали 2 мл дистиллированной воды и выливали ее. Затем в шприц набирали 2 мл воз-