Литература

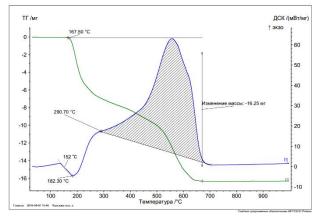
- 1. Дубовик А.В. Математическая модель термолиза смеси HTO-THT 1:1 // Горение и взрыв, 2016. Т.9, №4. С.146-153.
- 2. Дубовик А.В. Чувствительность твердых взрывчатых систем к удару / М.: Изд-во РХТУ им. Менделеева, 2011. 276 с.
- 3. Дубовик А.В. Оценка показателей чувствительности твердых ВВ к удару // Материалы VIII Всерос. конференции ЭКС / Черноголовка, 2016. С.89-93.
- 4. Манелис Г.Б. и др. Термическое разложение и горение взрывчатых веществ и порохов. М.: Наука, 1996. 223 с.
- 5. Smirnov S.P., Egorshev V.Yu. Kinetic features of NTO-TNT mixtures thermal decompositions // Proc. 16th Seminar NTREM, 2013. Univ. Pardubice. Czech Republic. P. 585-591.
- 6. Карпухин И.А., Боболев В.К. Закономерности возбуждения ударом взрыва твердых смесевых ВВ // Взрывное дело, № 68/25. М.: Недра, 1970. С.189-197.

УДК 615.011, 614.838.12

ПОЖАРОВЗРЫВООПАСНОСТЬ ГИДРОХЛОРИДА 5-АМИНОЛЕВУЛИНОВОЙ КИСЛОТЫ И ЕГО ПОЛУПРОДУКТА СИНТЕЗА

С. А. Платонова, А. Я. Васин, А. Н. Шушпанов, Г.Г. Гаджиев Российский химико-технологический университет им. Д. И. Менделеева

Работа посвящена определению пожаровзрывоопасных свойств нового лекарственного препарата противоопухолевого действия — гидрохлорида 5-аминолевулиновой кислоты (гидрохлорид 5-АЛК) и его полупродукта синтеза - метилового эфира 5-нитролевулиновой кислоты (метиловый эфир 5-НЛК) с использованием расчетных и экспериментальных методов.


Показатели пожаровзрывоопасности определялись на стандартных установках по методике Γ OCT 12.1.044-89 [1]. Термические характеристики образцов получены на приборе фирмы NETZSCH для синхронного анализа Γ Г/ДСК NETZSCH STA 449 F3 Jupiter.

Исследование температурных характеристик гидрохлорида 5-АЛК методом ДСК (рис. 1а) показало, что при температуре (167-210) $^{\circ}$ С наблюдается скачок потери массы (соответствует 27% масс.) и сопровождается эндоэффектом — предположительно происходит первичный акт распада, отрыв группы HCl(Γ), который является высокотоксичным соединением.

Температура начала экзотермического эффекта 291 °C, который видимо, обусловлен термоокислением органической части молекулы. Максимальное проявление экзоэффекта наблюдается при 565 °C, которое практически совпадает с температурой самовоспламенения вещества (575 °C).

Как видно из рис. 1б и данных таблицы 1 метиловый эфир 5-НЛК при нагревании сначала плавится и испаряется, при температуре (242-269) $^{\circ}$ С наблюдается начало экзотермического эффекта, который видимо обусловлен отрывом группы NO_2 (слабая связь C-- NO_2). Процесс термоокисления продуктов распада вещества с максимальным проявлением экзоэффекта начинается при (450-510) $^{\circ}$ С. Эта область температур совпадает со значением температуры самовоспламенения вещества (495 $^{\circ}$ С).

Полученные данные по показателям пожаровзрывоопасности исследованных веществ приведены в таблице 2, из которой видно, что метиловый эфир 5-НЛК является горючим веществом. Экспериментально значение НКПР для него не определялось, т.к. температура плавления вещества $42\,^{\circ}$ C. Расчетная величина составляет $48\,^{\circ}$ M3.

TT /%

100

114.10 °C

5

80

40

257 °C

Tinousads: 12721 Dw/r

100

200

300

Temmepartypa /°C

Temmepartypa /°C

Рис.1а. Термограмма гидрохлорида 5-АЛК при скорости нагревания 20 °C /мин.

Рис.1б. Термограмма метилового эфира 5-НЛК при скорости нагревания 2 $^{\rm o}$ С/мин.

Таблица 1

Результаты расшифровки термограмм метилового эфира 5-НЛК

Скорость нагрева, °С в минуту	t _{пл.} , °С	t _{н.экз р.} , °С	t _{max экз. p} , °С	t _{max.9k3.} , °C	ΔН _{экз.} , Дж/г
2	44	242,7	257	450	12721
5	47	260,6	273	475	9452
10	50	263	282	510	8388
20	40	268,7	287	490	9692

Таблица 2

Пожаровзрывоопасные свойства исследованных веществ

						*		
		Свойства						
Вещество	t _{н.экз.р} ,°С**	t _{Boc} , oC	t _{cam} , oC	Р _{тах} *, кПа	$(dP/d\tau)_{max}^{*},$ M Πa	НКПР, г/м ³	Горючесть	
1 Гидрохлорид 5 АЛК	290,7	305	575	-	-	до 500 - нет	Горючее трудновос-пламеняемое	
2 Метиловый эфир 5-НЛК	242	185	495	671	50,3	48*	Горючее	

⁻ параметры пожаровзрывоопасности веществ, полученные расчетными методами [2];

Расчетными методами [2] определены значения энтальпий образования и сгорания исследуемых соединений, которые приведены в таблице 3.

Энтальпии сгорания соединений вычислялись по закону Гесса [2] и формуле Коновалова-Хандрика [3].

Энтальпия сгорания по закону Гесса рассчитывалась по формуле:

$$\Delta H_{\rm cr}^0 = \sum_{i=0}^n \Delta H_{fi}^0 \nu_i - \Delta H_f^0,$$

 $^{^{**}}$ — температура начала интенсивного экзотермического разложения определена методом дифференциальной сканирующей калориметрии при скорости нагрева 20 °C/мин — для образца 1 и 2 °C/мин — для образца 2.

где $\Delta H^0_{\rm fi}$ - стандартная энтальпия образования конечных продуктов сгорания; $\Delta H^0_{\rm f}$ - стандартная энтальпия образования исходного вещества; v_i – число молей продуктов реакции.

Энтальпии образования исследуемых соединений для газообразной фазы рассчитывались методом аддитивных связей [3], методом Бенсона [4] и с помощью интегрированного программного комплекса CS ChemBioUltra 14 [6].

Для определения достоверных значений энтальпий образования изученных веществ проводился расчет всеми предложенными способами программы ChemOffice. Из 18 значений, полученных для каждого вещества, были отобраны наиболее близкие и взяты их средние значения.

 Таблица 3

 Величины энтальпий образования и сгорания исследуемых веществ

	Вещество				
Метод расчета	Гидрохлорид 5-АЛК	Метиловый эфир 5-НЛК			
	$\Delta H_{\mathrm{f r. \dot{\phi}.}}$ ккал/моль				
метод аддитивных связей	-112,53	-123,018			
метод Бенсона	-136,8	-141,2			
ChemOffice	-136,2	-138,5			
Среднее значение	-128,5 (-155,2*)	-134,3 (-157,55*)			
	ΔН°сг, МДж/кг				
Закон Гесса	-15,55	-17,075			
Метод Коновалова-Хандрика	-15,2	-16,81			

^{* -} рассчитанные энтальпии образования веществ для тв. фазы с учетом энтальпий плавления и испарения.

В качестве справочных величин рекомендованы энтальпии сгорания, рассчитанные по закону Гесса, как более достоверные.

Методом Киссинджера [6] по данным ДСК метилового эфира 5-НЛК, полученных при разных скоростях нагрева, определены кинетические параметры термического распада вещества.

В соответствии с этим методом, температура максимума экзотермического пика, определяемая по кривой ДТА или ДСК, связана со скоростью нагрева следующим уравнением:

$$\ln \frac{\phi}{T_{max}^2} = \ln \frac{AR}{E_a} - \frac{E_a}{RT_{max}},$$

где ϕ - скорость нагрева, °C/c; T_{max} — температура максимума экзотермического пика, K; A — предэкспоненциальный множитель, c^{-1} ; E_a — энергия активации, Дж/моль; R — универсальная газовая постоянная, Дж/моль· K.

Были рассчитаны значения $\ln(\varphi/T_{max}^2)$ и 1/Т необходимые для построения прямой. Построение прямой и вывод ее уравнения выполнялись в программе Microsoft Excel методом линейной аппроксимации (рис. 2).

Тангенс угла наклона прямой равен коэффициенту в полученном уравнении прямой и равен E_a/R . Отсюда легко выражалась энергия активации. Свободный член в уравнении равен $\ln (AR/E_a)$ откуда определяется значение $\lg A$.

В результате были получены следующие кинетические параметры: $E_a = 171 \text{ кДж/моль},$ $\log A = 14.2 \text{ c}^{-1}.$

Полученные в работе данные о пожаровзрывоопасности новых органических соединений имеют большое практическое значение. Они будут переданы в ГНЦ НИОПИК с целью создания безопасных условий ведения технологических процессов и средств взрывозащиты.

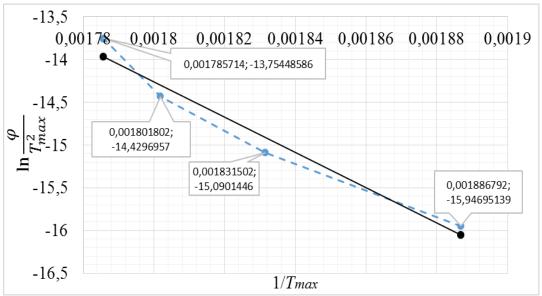


Рис. 2. Зависимость $\ln \frac{\varphi}{T_{max}^2}$ от $\frac{1}{T_{max}}$ метилового эфира 5-НЛК.

Литература

- 1. ГОСТ 12.1.044-89 (84) ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения, 1989 г.
- 2. Корольченко А. Я., Корольченко Д. А. Пожаровзрывоопасность веществ и материалов и средства их тушения. Справочник. Часть 1. // М. Ассоциация «Пожнаука», 2004 г., 713 с.
- 3. Монахов В. Т. Методы исследования пожарной опасности веществ. Москва: Химия, 1979, 416 с.
- 4. Рид Р., Праусниц Дж., Шервуд Т. Свойства жидкостей и газов. Л.: Химия, 1982, 592 с.
- 5. Программное обеспечение / ChemOffice // ChemBio3D 14.0 UserGuide / ver. 2014 [электронный ресурс]. Режим доступа www.cambridgesoft.com (дата обращения 20.02.2017)
- 6. Kissinger H. E. Reaction kinetics in differential thermal analysis, Anal. Chem., 1957, Vol.29 (11), pp. 1702–1706.

УДК 615.011, 614.838.12

ОЦЕНКА ПОЖАРОВЗРЫВООПАСНОСТИ ЛЕКАРСТВЕННОГО ПРЕПАРАТА АДК-175

И.И. Черепахина, О.С. Канаева, А.Н. Шушпанов, А. Я. Васин Российский химико-технологический университет им. Д.И. Менделеева

При производстве, эксплуатации и хранении фармацевтических препаратов зачастую происходит пылеобразование. Так как пылевоздушные смеси подвержены горению и взрыву, с препаратами следует проводить ряд испытаний на определение пожаровзрывоопасных